This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| leatom.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| leatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| leatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | leat2 | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃 ) ) → 𝑋 = 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | leatom.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | leatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | leatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | leatb | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) ) |
| 6 | orcom | ⊢ ( ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) | |
| 7 | neor | ⊢ ( ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ↔ ( 𝑋 ≠ 0 → 𝑋 = 𝑃 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ ( 𝑋 ≠ 0 → 𝑋 = 𝑃 ) ) |
| 9 | 5 8 | bitrdi | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 ≠ 0 → 𝑋 = 𝑃 ) ) ) |
| 10 | 9 | biimpd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 → ( 𝑋 ≠ 0 → 𝑋 = 𝑃 ) ) ) |
| 11 | 10 | com23 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≠ 0 → ( 𝑋 ≤ 𝑃 → 𝑋 = 𝑃 ) ) ) |
| 12 | 11 | imp32 | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃 ) ) → 𝑋 = 𝑃 ) |