This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leatom.b | |- B = ( Base ` K ) |
|
| leatom.l | |- .<_ = ( le ` K ) |
||
| leatom.z | |- .0. = ( 0. ` K ) |
||
| leatom.a | |- A = ( Atoms ` K ) |
||
| Assertion | leat2 | |- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ ( X =/= .0. /\ X .<_ P ) ) -> X = P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | |- B = ( Base ` K ) |
|
| 2 | leatom.l | |- .<_ = ( le ` K ) |
|
| 3 | leatom.z | |- .0. = ( 0. ` K ) |
|
| 4 | leatom.a | |- A = ( Atoms ` K ) |
|
| 5 | 1 2 3 4 | leatb | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |
| 6 | orcom | |- ( ( X = P \/ X = .0. ) <-> ( X = .0. \/ X = P ) ) |
|
| 7 | neor | |- ( ( X = .0. \/ X = P ) <-> ( X =/= .0. -> X = P ) ) |
|
| 8 | 6 7 | bitri | |- ( ( X = P \/ X = .0. ) <-> ( X =/= .0. -> X = P ) ) |
| 9 | 5 8 | bitrdi | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X =/= .0. -> X = P ) ) ) |
| 10 | 9 | biimpd | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P -> ( X =/= .0. -> X = P ) ) ) |
| 11 | 10 | com23 | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X =/= .0. -> ( X .<_ P -> X = P ) ) ) |
| 12 | 11 | imp32 | |- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ ( X =/= .0. /\ X .<_ P ) ) -> X = P ) |