This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers is 0 iff at least one of its element is 0. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfeq0b | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) = 0 ↔ 0 ∈ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) | |
| 2 | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) | |
| 3 | 2 | nnne0d | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ≠ 0 ) |
| 4 | 3 | 3expia | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 0 ∉ 𝑍 → ( lcm ‘ 𝑍 ) ≠ 0 ) ) |
| 5 | 1 4 | biimtrrid | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ¬ 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) ≠ 0 ) ) |
| 6 | 5 | necon4bd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) = 0 → 0 ∈ 𝑍 ) ) |
| 7 | lcmf0val | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) | |
| 8 | 7 | ex | ⊢ ( 𝑍 ⊆ ℤ → ( 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) = 0 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) = 0 ) ) |
| 10 | 6 9 | impbid | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) = 0 ↔ 0 ∈ 𝑍 ) ) |