This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers is 0 iff at least one of its element is 0. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfeq0b | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) = 0 <-> 0 e. Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( 0 e/ Z <-> -. 0 e. Z ) |
|
| 2 | lcmfn0cl | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
|
| 3 | 2 | nnne0d | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) =/= 0 ) |
| 4 | 3 | 3expia | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( 0 e/ Z -> ( _lcm ` Z ) =/= 0 ) ) |
| 5 | 1 4 | biimtrrid | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( -. 0 e. Z -> ( _lcm ` Z ) =/= 0 ) ) |
| 6 | 5 | necon4bd | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) = 0 -> 0 e. Z ) ) |
| 7 | lcmf0val | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |
|
| 8 | 7 | ex | |- ( Z C_ ZZ -> ( 0 e. Z -> ( _lcm ` Z ) = 0 ) ) |
| 9 | 8 | adantr | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( 0 e. Z -> ( _lcm ` Z ) = 0 ) ) |
| 10 | 6 9 | impbid | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) = 0 <-> 0 e. Z ) ) |