This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latmlem1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | 1 2 3 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) |
| 5 | 4 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) |
| 6 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 7 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ) |
| 8 | 7 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ) |
| 9 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 11 | 1 2 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ) ) |
| 12 | 6 8 9 10 11 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ) ) |
| 13 | 5 12 | mpand | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ) ) |
| 14 | 1 2 3 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) |
| 15 | 14 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) |
| 16 | 13 15 | jctird | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) ) ) |
| 17 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 18 | 8 10 17 | 3jca | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 19 | 1 2 3 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) ↔ ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ) ) |
| 20 | 18 19 | syldan | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑍 ) ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) ↔ ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ) ) |
| 21 | 16 20 | sylibd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑍 ) ≤ ( 𝑌 ∧ 𝑍 ) ) ) |