This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latcl2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latcl2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| latcl2.k | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | ||
| latcl2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| latcl2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | latcl2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latcl2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | latcl2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | latcl2.k | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | |
| 5 | latcl2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | latcl2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 5 6 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 8 | 1 2 3 | islat | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| 9 | 4 8 | sylib | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| 10 | 9 | simprld | ⊢ ( 𝜑 → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 11 | 7 10 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
| 12 | 9 | simprrd | ⊢ ( 𝜑 → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 13 | 7 12 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
| 14 | 11 13 | jca | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) ) |