This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlejb1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = 𝐵 ) ) |
| 4 | 1 3 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = 𝐵 ) ) ) |
| 5 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 7 | id | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) |
| 9 | 5 8 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) |
| 10 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 11 | 10 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 12 | 10 | elimel | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∈ Cℋ |
| 13 | 11 12 | chlejb1i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) |
| 14 | 4 9 13 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) ) |