This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latjrot | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑍 ∨ 𝑋 ) ∨ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | 1 2 | latj31 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑍 ∨ 𝑌 ) ∨ 𝑋 ) ) |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 5 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 6 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 7 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | 1 2 | latj32 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑍 ∨ 𝑌 ) ∨ 𝑋 ) = ( ( 𝑍 ∨ 𝑋 ) ∨ 𝑌 ) ) |
| 9 | 4 5 6 7 8 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 ∨ 𝑌 ) ∨ 𝑋 ) = ( ( 𝑍 ∨ 𝑋 ) ∨ 𝑌 ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑍 ∨ 𝑋 ) ∨ 𝑌 ) ) |