This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjrot | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( Z .\/ X ) .\/ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | 1 2 | latj31 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( Z .\/ Y ) .\/ X ) ) |
| 4 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 5 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 6 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 7 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 8 | 1 2 | latj32 | |- ( ( K e. Lat /\ ( Z e. B /\ Y e. B /\ X e. B ) ) -> ( ( Z .\/ Y ) .\/ X ) = ( ( Z .\/ X ) .\/ Y ) ) |
| 9 | 4 5 6 7 8 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Z .\/ Y ) .\/ X ) = ( ( Z .\/ X ) .\/ Y ) ) |
| 10 | 3 9 | eqtrd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( Z .\/ X ) .\/ Y ) ) |