This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latcl2.b | |- B = ( Base ` K ) |
|
| latcl2.j | |- .\/ = ( join ` K ) |
||
| latcl2.m | |- ./\ = ( meet ` K ) |
||
| latcl2.k | |- ( ph -> K e. Lat ) |
||
| latcl2.x | |- ( ph -> X e. B ) |
||
| latcl2.y | |- ( ph -> Y e. B ) |
||
| Assertion | latcl2 | |- ( ph -> ( <. X , Y >. e. dom .\/ /\ <. X , Y >. e. dom ./\ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latcl2.b | |- B = ( Base ` K ) |
|
| 2 | latcl2.j | |- .\/ = ( join ` K ) |
|
| 3 | latcl2.m | |- ./\ = ( meet ` K ) |
|
| 4 | latcl2.k | |- ( ph -> K e. Lat ) |
|
| 5 | latcl2.x | |- ( ph -> X e. B ) |
|
| 6 | latcl2.y | |- ( ph -> Y e. B ) |
|
| 7 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 8 | 1 2 3 | islat | |- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 9 | 4 8 | sylib | |- ( ph -> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 10 | 9 | simprld | |- ( ph -> dom .\/ = ( B X. B ) ) |
| 11 | 7 10 | eleqtrrd | |- ( ph -> <. X , Y >. e. dom .\/ ) |
| 12 | 9 | simprrd | |- ( ph -> dom ./\ = ( B X. B ) ) |
| 13 | 7 12 | eleqtrrd | |- ( ph -> <. X , Y >. e. dom ./\ ) |
| 14 | 11 13 | jca | |- ( ph -> ( <. X , Y >. e. dom .\/ /\ <. X , Y >. e. dom ./\ ) ) |