This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenhaus | ⊢ ( 𝐽 ∈ Haus → ( 𝑘Gen ‘ 𝐽 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) | |
| 2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 | kgentopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐽 ∈ Haus → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 6 | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝐽 ∈ Haus → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | sshaus | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑘Gen ‘ 𝐽 ) ∈ Haus ) |
| 10 | 5 7 9 | mpd3an23 | ⊢ ( 𝐽 ∈ Haus → ( 𝑘Gen ‘ 𝐽 ) ∈ Haus ) |