This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenhaus | |- ( J e. Haus -> ( kGen ` J ) e. Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | |- ( J e. Haus -> J e. Top ) |
|
| 2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 3 | 1 2 | sylib | |- ( J e. Haus -> J e. ( TopOn ` U. J ) ) |
| 4 | kgentopon | |- ( J e. ( TopOn ` U. J ) -> ( kGen ` J ) e. ( TopOn ` U. J ) ) |
|
| 5 | 3 4 | syl | |- ( J e. Haus -> ( kGen ` J ) e. ( TopOn ` U. J ) ) |
| 6 | kgenss | |- ( J e. Top -> J C_ ( kGen ` J ) ) |
|
| 7 | 1 6 | syl | |- ( J e. Haus -> J C_ ( kGen ` J ) ) |
| 8 | eqid | |- U. J = U. J |
|
| 9 | 8 | sshaus | |- ( ( J e. Haus /\ ( kGen ` J ) e. ( TopOn ` U. J ) /\ J C_ ( kGen ` J ) ) -> ( kGen ` J ) e. Haus ) |
| 10 | 5 7 9 | mpd3an23 | |- ( J e. Haus -> ( kGen ` J ) e. Haus ) |