This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgen2cn | |- ( F e. ( J Cn K ) -> F e. ( ( kGen ` J ) Cn ( kGen ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 3 | 1 2 | sylib | |- ( F e. ( J Cn K ) -> J e. ( TopOn ` U. J ) ) |
| 4 | kgentopon | |- ( J e. ( TopOn ` U. J ) -> ( kGen ` J ) e. ( TopOn ` U. J ) ) |
|
| 5 | 3 4 | syl | |- ( F e. ( J Cn K ) -> ( kGen ` J ) e. ( TopOn ` U. J ) ) |
| 6 | kgenss | |- ( J e. Top -> J C_ ( kGen ` J ) ) |
|
| 7 | 1 6 | syl | |- ( F e. ( J Cn K ) -> J C_ ( kGen ` J ) ) |
| 8 | eqid | |- U. J = U. J |
|
| 9 | 8 | cnss1 | |- ( ( ( kGen ` J ) e. ( TopOn ` U. J ) /\ J C_ ( kGen ` J ) ) -> ( J Cn K ) C_ ( ( kGen ` J ) Cn K ) ) |
| 10 | 5 7 9 | syl2anc | |- ( F e. ( J Cn K ) -> ( J Cn K ) C_ ( ( kGen ` J ) Cn K ) ) |
| 11 | kgenf | |- kGen : Top --> Top |
|
| 12 | ffn | |- ( kGen : Top --> Top -> kGen Fn Top ) |
|
| 13 | 11 12 | ax-mp | |- kGen Fn Top |
| 14 | fnfvelrn | |- ( ( kGen Fn Top /\ J e. Top ) -> ( kGen ` J ) e. ran kGen ) |
|
| 15 | 13 1 14 | sylancr | |- ( F e. ( J Cn K ) -> ( kGen ` J ) e. ran kGen ) |
| 16 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 17 | kgencn3 | |- ( ( ( kGen ` J ) e. ran kGen /\ K e. Top ) -> ( ( kGen ` J ) Cn K ) = ( ( kGen ` J ) Cn ( kGen ` K ) ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( F e. ( J Cn K ) -> ( ( kGen ` J ) Cn K ) = ( ( kGen ` J ) Cn ( kGen ` K ) ) ) |
| 19 | 10 18 | sseqtrd | |- ( F e. ( J Cn K ) -> ( J Cn K ) C_ ( ( kGen ` J ) Cn ( kGen ` K ) ) ) |
| 20 | id | |- ( F e. ( J Cn K ) -> F e. ( J Cn K ) ) |
|
| 21 | 19 20 | sseldd | |- ( F e. ( J Cn K ) -> F e. ( ( kGen ` J ) Cn ( kGen ` K ) ) ) |