This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = <. A | ( | B >. <. C | D >. ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bracl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) | |
| 2 | bracl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 5 | bralnfn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ LinFn ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( bra ‘ 𝐴 ) ∈ LinFn ) |
| 7 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐵 ∈ ℋ ) | |
| 9 | lnfnmul | ⊢ ( ( ( bra ‘ 𝐴 ) ∈ LinFn ∧ ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 11 | 4 10 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) ) |