This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = <. A | ( | B >. <. C | D >. ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bracl | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
|
| 2 | bracl | |- ( ( C e. ~H /\ D e. ~H ) -> ( ( bra ` C ) ` D ) e. CC ) |
|
| 3 | mulcom | |- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( ( bra ` C ) ` D ) e. CC ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
| 5 | bralnfn | |- ( A e. ~H -> ( bra ` A ) e. LinFn ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` A ) e. LinFn ) |
| 7 | 2 | adantl | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` C ) ` D ) e. CC ) |
| 8 | simplr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> B e. ~H ) |
|
| 9 | lnfnmul | |- ( ( ( bra ` A ) e. LinFn /\ ( ( bra ` C ) ` D ) e. CC /\ B e. ~H ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
| 11 | 4 10 | eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) ) |