This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of all sets equinumerous to a set A and having the least possible rank is a set. This is the part of the justification of the definition of kard of Enderton p. 222. (Contributed by NM, 14-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kardex | |- { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } = { x | ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) } |
|
| 2 | vex | |- x e. _V |
|
| 3 | breq1 | |- ( z = x -> ( z ~~ A <-> x ~~ A ) ) |
|
| 4 | 2 3 | elab | |- ( x e. { z | z ~~ A } <-> x ~~ A ) |
| 5 | breq1 | |- ( z = y -> ( z ~~ A <-> y ~~ A ) ) |
|
| 6 | 5 | ralab | |- ( A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) <-> A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 7 | 4 6 | anbi12i | |- ( ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) <-> ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) ) |
| 8 | 7 | abbii | |- { x | ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) } = { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
| 9 | 1 8 | eqtri | |- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } = { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
| 10 | scottex | |- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } e. _V |
|
| 11 | 9 10 | eqeltrri | |- { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } e. _V |