This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| joinfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | joinfval2 | ⊢ ( 𝐾 ∈ 𝑉 → ∨ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 2 | joinfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | 1 2 | joinfval | ⊢ ( 𝐾 ∈ 𝑉 → ∨ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝑈 𝑧 } ) |
| 4 | 1 | lubfun | ⊢ Fun 𝑈 |
| 5 | funbrfv2b | ⊢ ( Fun 𝑈 → ( { 𝑥 , 𝑦 } 𝑈 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( { 𝑥 , 𝑦 } 𝑈 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) |
| 7 | eqcom | ⊢ ( ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ↔ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 9 | 6 8 | bitri | ⊢ ( { 𝑥 , 𝑦 } 𝑈 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 10 | 9 | oprabbii | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝑈 𝑧 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } |
| 11 | 3 10 | eqtrdi | ⊢ ( 𝐾 ∈ 𝑉 → ∨ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } ) |