This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| Assertion | ixxval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A O B ) = { z e. RR* | ( A R z /\ z S B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | breq1 | |- ( x = A -> ( x R z <-> A R z ) ) |
|
| 3 | 2 | anbi1d | |- ( x = A -> ( ( x R z /\ z S y ) <-> ( A R z /\ z S y ) ) ) |
| 4 | 3 | rabbidv | |- ( x = A -> { z e. RR* | ( x R z /\ z S y ) } = { z e. RR* | ( A R z /\ z S y ) } ) |
| 5 | breq2 | |- ( y = B -> ( z S y <-> z S B ) ) |
|
| 6 | 5 | anbi2d | |- ( y = B -> ( ( A R z /\ z S y ) <-> ( A R z /\ z S B ) ) ) |
| 7 | 6 | rabbidv | |- ( y = B -> { z e. RR* | ( A R z /\ z S y ) } = { z e. RR* | ( A R z /\ z S B ) } ) |
| 8 | xrex | |- RR* e. _V |
|
| 9 | 8 | rabex | |- { z e. RR* | ( A R z /\ z S B ) } e. _V |
| 10 | 4 7 1 9 | ovmpo | |- ( ( A e. RR* /\ B e. RR* ) -> ( A O B ) = { z e. RR* | ( A R z /\ z S B ) } ) |