This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpsnval | ⊢ ( 𝑋 ∈ 𝑉 → X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp | ⊢ X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 2 | ralsnsg | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 3 | sbcel12 | ⊢ ( [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 4 | csbfv2g | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 ) ) | |
| 5 | csbvarg | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ 𝑥 = 𝑋 ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑓 ‘ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 ) = ( 𝑓 ‘ 𝑋 ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑋 ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑋 ∈ 𝑉 → ( ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 9 | 3 8 | bitrid | ⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 10 | 2 9 | bitrd | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 12 | 11 | abbidv | ⊢ ( 𝑋 ∈ 𝑉 → { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) } ) |
| 13 | 1 12 | eqtrid | ⊢ ( 𝑋 ∈ 𝑉 → X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) } ) |