This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpsnval | |- ( X e. V -> X_ x e. { X } B = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp | |- X_ x e. { X } B = { f | ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) } |
|
| 2 | ralsnsg | |- ( X e. V -> ( A. x e. { X } ( f ` x ) e. B <-> [. X / x ]. ( f ` x ) e. B ) ) |
|
| 3 | sbcel12 | |- ( [. X / x ]. ( f ` x ) e. B <-> [_ X / x ]_ ( f ` x ) e. [_ X / x ]_ B ) |
|
| 4 | csbfv2g | |- ( X e. V -> [_ X / x ]_ ( f ` x ) = ( f ` [_ X / x ]_ x ) ) |
|
| 5 | csbvarg | |- ( X e. V -> [_ X / x ]_ x = X ) |
|
| 6 | 5 | fveq2d | |- ( X e. V -> ( f ` [_ X / x ]_ x ) = ( f ` X ) ) |
| 7 | 4 6 | eqtrd | |- ( X e. V -> [_ X / x ]_ ( f ` x ) = ( f ` X ) ) |
| 8 | 7 | eleq1d | |- ( X e. V -> ( [_ X / x ]_ ( f ` x ) e. [_ X / x ]_ B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 9 | 3 8 | bitrid | |- ( X e. V -> ( [. X / x ]. ( f ` x ) e. B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 10 | 2 9 | bitrd | |- ( X e. V -> ( A. x e. { X } ( f ` x ) e. B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 11 | 10 | anbi2d | |- ( X e. V -> ( ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) <-> ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) ) ) |
| 12 | 11 | abbidv | |- ( X e. V -> { f | ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) } = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) } ) |
| 13 | 1 12 | eqtrid | |- ( X e. V -> X_ x e. { X } B = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) } ) |