This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpf | |- ( F e. X_ x e. A B -> F : A --> U_ x e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 | |- ( F e. X_ x e. A B <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
|
| 2 | ssiun2 | |- ( x e. A -> B C_ U_ x e. A B ) |
|
| 3 | 2 | sseld | |- ( x e. A -> ( ( F ` x ) e. B -> ( F ` x ) e. U_ x e. A B ) ) |
| 4 | 3 | ralimia | |- ( A. x e. A ( F ` x ) e. B -> A. x e. A ( F ` x ) e. U_ x e. A B ) |
| 5 | 4 | anim2i | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> ( F Fn A /\ A. x e. A ( F ` x ) e. U_ x e. A B ) ) |
| 6 | nfcv | |- F/_ x A |
|
| 7 | nfiu1 | |- F/_ x U_ x e. A B |
|
| 8 | nfcv | |- F/_ x F |
|
| 9 | 6 7 8 | ffnfvf | |- ( F : A --> U_ x e. A B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. U_ x e. A B ) ) |
| 10 | 5 9 | sylibr | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> F : A --> U_ x e. A B ) |
| 11 | 10 | 3adant1 | |- ( ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) -> F : A --> U_ x e. A B ) |
| 12 | 1 11 | sylbi | |- ( F e. X_ x e. A B -> F : A --> U_ x e. A B ) |