This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function maps to a class to which all values belong. This version of ffnfv uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ffnfvf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| ffnfvf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| ffnfvf.3 | ⊢ Ⅎ 𝑥 𝐹 | ||
| Assertion | ffnfvf | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfvf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | ffnfvf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | ffnfvf.3 | ⊢ Ⅎ 𝑥 𝐹 | |
| 4 | ffnfv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑧 𝐴 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 7 | 3 6 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 8 | 7 2 | nfel | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 |
| 9 | nfv | ⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 | |
| 10 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 12 | 5 1 8 9 11 | cbvralfw | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 14 | 4 13 | bitri | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |