This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpeq1 | ⊢ ( 𝐴 = 𝐵 → X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑓 Fn 𝐴 ↔ 𝑓 Fn 𝐵 ) ) | |
| 2 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑓 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 4 | 3 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } = { 𝑓 ∣ ( 𝑓 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } ) |
| 5 | dfixp | ⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } | |
| 6 | dfixp | ⊢ X 𝑥 ∈ 𝐵 𝐶 = { 𝑓 ∣ ( 𝑓 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐶 ) |