This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpeq1 | |- ( A = B -> X_ x e. A C = X_ x e. B C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 | |- ( A = B -> ( f Fn A <-> f Fn B ) ) |
|
| 2 | raleq | |- ( A = B -> ( A. x e. A ( f ` x ) e. C <-> A. x e. B ( f ` x ) e. C ) ) |
|
| 3 | 1 2 | anbi12d | |- ( A = B -> ( ( f Fn A /\ A. x e. A ( f ` x ) e. C ) <-> ( f Fn B /\ A. x e. B ( f ` x ) e. C ) ) ) |
| 4 | 3 | abbidv | |- ( A = B -> { f | ( f Fn A /\ A. x e. A ( f ` x ) e. C ) } = { f | ( f Fn B /\ A. x e. B ( f ` x ) e. C ) } ) |
| 5 | dfixp | |- X_ x e. A C = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. C ) } |
|
| 6 | dfixp | |- X_ x e. B C = { f | ( f Fn B /\ A. x e. B ( f ` x ) e. C ) } |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( A = B -> X_ x e. A C = X_ x e. B C ) |