This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of iunss as of 2-Feb-2026. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunssOLD | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } | |
| 2 | 1 | sseq1i | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ 𝐶 ) |
| 3 | abss | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 4 | df-ss | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 6 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 7 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 9 | 5 6 8 | 3bitrri | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 10 | 2 3 9 | 3bitri | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |