This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union of identical classes. (Contributed by AV, 5-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iuneqconst.p | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| Assertion | iuneqconst | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneqconst.p | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 2 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 3 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
| 4 | 3 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 6 | 5 | ex | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 7 | nfv | ⊢ Ⅎ 𝑥 𝑋 ∈ 𝐴 | |
| 8 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 | |
| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| 10 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 | |
| 11 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) ) | |
| 12 | eleq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 13 | 12 | biimpd | ⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 14 | 11 13 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) ) |
| 16 | 9 10 15 | rexlimd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 17 | 6 16 | impbid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 18 | 2 17 | bitr4id | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
| 19 | 18 | eqrdv | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |