This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law combining indexed union with indexed intersection. Eq. 14 in KuratowskiMostowski p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29 . (Contributed by NM, 17-Aug-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.12 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 2 | eliin | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) |
| 5 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
| 7 | 1 4 6 | 3imtr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 8 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ) | |
| 9 | eliin | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 10 | 9 | elv | ⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 11 | 7 8 10 | 3imtr4i | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 12 | 11 | ssriv | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |