This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | itgneg | ⊢ ( 𝜑 → - ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 - 𝐵 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 | 4 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 | 5 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 7 | 5 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 8 | 2 7 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 10 | 6 9 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | 5 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 13 | 8 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 14 | 12 13 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 15 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) | |
| 16 | 11 14 15 | sylancr | ⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 17 | 10 16 | negdid | ⊢ ( 𝜑 → - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 18 | 0re | ⊢ 0 ∈ ℝ | |
| 19 | ifcl | ⊢ ( ( ( ℜ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 20 | 6 18 19 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 21 | 6 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 22 | 9 21 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 24 | 20 23 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 25 | 6 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 26 | ifcl | ⊢ ( ( - ( ℜ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 27 | 25 18 26 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 28 | 22 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 29 | 27 28 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 30 | 24 29 | negsubdi2d | ⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 31 | 6 9 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 32 | 31 | negeqd | ⊢ ( 𝜑 → - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = - ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 33 | 5 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 34 | 33 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) ∈ ℝ ) |
| 35 | 1 2 | iblneg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ) |
| 36 | 33 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 37 | 35 36 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) |
| 38 | 37 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 39 | 34 38 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 40 | 5 | renegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 41 | 40 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℜ ‘ 𝐵 ) ) ) |
| 42 | 41 40 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 43 | 42 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 44 | 40 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = - - ( ℜ ‘ 𝐵 ) ) |
| 45 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 46 | 45 | negnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 47 | 44 46 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 48 | 47 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) |
| 49 | 48 47 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 50 | 49 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 51 | 43 50 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 52 | 39 51 | eqtrd | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 53 | 30 32 52 | 3eqtr4d | ⊢ ( 𝜑 → - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 ) |
| 54 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) | |
| 55 | 11 14 54 | sylancr | ⊢ ( 𝜑 → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 56 | ifcl | ⊢ ( ( ( ℑ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 57 | 12 18 56 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 58 | 12 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 59 | 13 58 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 60 | 59 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 61 | 57 60 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 62 | 12 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 63 | ifcl | ⊢ ( ( - ( ℑ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 64 | 62 18 63 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 65 | 59 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 66 | 64 65 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 67 | 61 66 | negsubdi2d | ⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 68 | 5 | imnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 69 | 68 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℑ ‘ 𝐵 ) ) ) |
| 70 | 69 68 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 71 | 70 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 72 | 68 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = - - ( ℑ ‘ 𝐵 ) ) |
| 73 | 12 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 74 | 73 | negnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℑ ‘ 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 75 | 72 74 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 76 | 75 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ ( ℑ ‘ 𝐵 ) ) ) |
| 77 | 76 75 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 78 | 77 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 79 | 71 78 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 80 | 67 79 | eqtr4d | ⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 81 | 12 13 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 82 | 81 | negeqd | ⊢ ( 𝜑 → - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 83 | 33 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) ∈ ℝ ) |
| 84 | 37 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 85 | 83 84 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 86 | 80 82 85 | 3eqtr4d | ⊢ ( 𝜑 → - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) |
| 87 | 86 | oveq2d | ⊢ ( 𝜑 → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) |
| 88 | 55 87 | eqtr3d | ⊢ ( 𝜑 → - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) |
| 89 | 53 88 | oveq12d | ⊢ ( 𝜑 → ( - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 90 | 17 89 | eqtrd | ⊢ ( 𝜑 → - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 91 | 1 2 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 92 | 91 | negeqd | ⊢ ( 𝜑 → - ∫ 𝐴 𝐵 d 𝑥 = - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 93 | 33 35 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 - 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 94 | 90 92 93 | 3eqtr4d | ⊢ ( 𝜑 → - ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 - 𝐵 d 𝑥 ) |