This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | iblneg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 | 4 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 | 5 | renegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 7 | 6 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℜ ‘ 𝐵 ) ) ) |
| 8 | 7 6 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 9 | 8 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 10 | 5 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 11 | 2 10 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 12 | 11 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 13 | 5 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 14 | 13 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 15 | 12 14 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 16 | 15 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 17 | 9 16 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 18 | 6 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = - - ( ℜ ‘ 𝐵 ) ) |
| 19 | 13 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 20 | 19 | negnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 21 | 18 20 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 22 | 21 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) |
| 23 | 22 21 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 24 | 23 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 25 | 15 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 26 | 24 25 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 27 | 5 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 28 | 27 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) ∈ ℝ ) |
| 29 | 28 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 30 | 17 26 29 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 31 | 5 | imnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 32 | 31 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℑ ‘ 𝐵 ) ) ) |
| 33 | 32 31 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 34 | 33 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 35 | 11 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 36 | 5 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 37 | 36 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 38 | 35 37 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 39 | 38 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 40 | 34 39 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 41 | 31 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = - - ( ℑ ‘ 𝐵 ) ) |
| 42 | 36 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 43 | 42 | negnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℑ ‘ 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 44 | 41 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 45 | 44 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ ( ℑ ‘ 𝐵 ) ) ) |
| 46 | 45 44 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 47 | 46 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 48 | 38 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 49 | 47 48 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 50 | 27 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) ∈ ℝ ) |
| 51 | 50 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 52 | 40 49 51 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 53 | 27 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 54 | 30 52 53 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ) |