This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgge0.1 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| itgge0.2 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| itgge0.3 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | itgge0 | |- ( ph -> 0 <_ S. A B _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgge0.1 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 2 | itgge0.2 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 3 | itgge0.3 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 4 | itgz | |- S. A 0 _d x = 0 |
|
| 5 | fconstmpt | |- ( A X. { 0 } ) = ( x e. A |-> 0 ) |
|
| 6 | iblmbf | |- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
|
| 7 | 1 6 | syl | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 8 | 7 2 | mbfdm2 | |- ( ph -> A e. dom vol ) |
| 9 | ibl0 | |- ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( A X. { 0 } ) e. L^1 ) |
| 11 | 5 10 | eqeltrrid | |- ( ph -> ( x e. A |-> 0 ) e. L^1 ) |
| 12 | 0red | |- ( ( ph /\ x e. A ) -> 0 e. RR ) |
|
| 13 | 11 1 12 2 3 | itgle | |- ( ph -> S. A 0 _d x <_ S. A B _d x ) |
| 14 | 4 13 | eqbrtrrid | |- ( ph -> 0 <_ S. A B _d x ) |