This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for itcovalt2lem2 . (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalt2lem2lem2 | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. ( ( ( N + C ) x. ( 2 ^ Y ) ) - C ) ) + C ) = ( ( ( N + C ) x. ( 2 ^ ( Y + 1 ) ) ) - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> 2 e. CC ) |
|
| 2 | simpr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 3 | simpr | |- ( ( Y e. NN0 /\ C e. NN0 ) -> C e. NN0 ) |
|
| 4 | 3 | adantr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> C e. NN0 ) |
| 5 | 2 4 | nn0addcld | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( N + C ) e. NN0 ) |
| 6 | 5 | nn0cnd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( N + C ) e. CC ) |
| 7 | 2nn0 | |- 2 e. NN0 |
|
| 8 | 7 | a1i | |- ( Y e. NN0 -> 2 e. NN0 ) |
| 9 | id | |- ( Y e. NN0 -> Y e. NN0 ) |
|
| 10 | 8 9 | nn0expcld | |- ( Y e. NN0 -> ( 2 ^ Y ) e. NN0 ) |
| 11 | 10 | nn0cnd | |- ( Y e. NN0 -> ( 2 ^ Y ) e. CC ) |
| 12 | 11 | ad2antrr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 ^ Y ) e. CC ) |
| 13 | 6 12 | mulcld | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( N + C ) x. ( 2 ^ Y ) ) e. CC ) |
| 14 | nn0cn | |- ( C e. NN0 -> C e. CC ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> C e. CC ) |
| 16 | 1 13 15 | subdid | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( ( ( N + C ) x. ( 2 ^ Y ) ) - C ) ) = ( ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) - ( 2 x. C ) ) ) |
| 17 | 16 | oveq1d | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. ( ( ( N + C ) x. ( 2 ^ Y ) ) - C ) ) + C ) = ( ( ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) - ( 2 x. C ) ) + C ) ) |
| 18 | 7 | a1i | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> 2 e. NN0 ) |
| 19 | 10 | ad2antrr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 ^ Y ) e. NN0 ) |
| 20 | 5 19 | nn0mulcld | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( N + C ) x. ( 2 ^ Y ) ) e. NN0 ) |
| 21 | 18 20 | nn0mulcld | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) e. NN0 ) |
| 22 | 21 | nn0cnd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) e. CC ) |
| 23 | 7 | a1i | |- ( ( Y e. NN0 /\ C e. NN0 ) -> 2 e. NN0 ) |
| 24 | 23 3 | nn0mulcld | |- ( ( Y e. NN0 /\ C e. NN0 ) -> ( 2 x. C ) e. NN0 ) |
| 25 | 24 | adantr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. C ) e. NN0 ) |
| 26 | 25 | nn0cnd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. C ) e. CC ) |
| 27 | 4 | nn0cnd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> C e. CC ) |
| 28 | 22 26 27 | subsubd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) - ( ( 2 x. C ) - C ) ) = ( ( ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) - ( 2 x. C ) ) + C ) ) |
| 29 | 1 6 12 | mul12d | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) = ( ( N + C ) x. ( 2 x. ( 2 ^ Y ) ) ) ) |
| 30 | 2cnd | |- ( Y e. NN0 -> 2 e. CC ) |
|
| 31 | 30 11 | mulcomd | |- ( Y e. NN0 -> ( 2 x. ( 2 ^ Y ) ) = ( ( 2 ^ Y ) x. 2 ) ) |
| 32 | 30 9 | expp1d | |- ( Y e. NN0 -> ( 2 ^ ( Y + 1 ) ) = ( ( 2 ^ Y ) x. 2 ) ) |
| 33 | 31 32 | eqtr4d | |- ( Y e. NN0 -> ( 2 x. ( 2 ^ Y ) ) = ( 2 ^ ( Y + 1 ) ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( 2 ^ Y ) ) = ( 2 ^ ( Y + 1 ) ) ) |
| 35 | 34 | oveq2d | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( N + C ) x. ( 2 x. ( 2 ^ Y ) ) ) = ( ( N + C ) x. ( 2 ^ ( Y + 1 ) ) ) ) |
| 36 | 29 35 | eqtrd | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) = ( ( N + C ) x. ( 2 ^ ( Y + 1 ) ) ) ) |
| 37 | 2txmxeqx | |- ( C e. CC -> ( ( 2 x. C ) - C ) = C ) |
|
| 38 | 14 37 | syl | |- ( C e. NN0 -> ( ( 2 x. C ) - C ) = C ) |
| 39 | 38 | ad2antlr | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. C ) - C ) = C ) |
| 40 | 36 39 | oveq12d | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. ( ( N + C ) x. ( 2 ^ Y ) ) ) - ( ( 2 x. C ) - C ) ) = ( ( ( N + C ) x. ( 2 ^ ( Y + 1 ) ) ) - C ) ) |
| 41 | 17 28 40 | 3eqtr2d | |- ( ( ( Y e. NN0 /\ C e. NN0 ) /\ N e. NN0 ) -> ( ( 2 x. ( ( ( N + C ) x. ( 2 ^ Y ) ) - C ) ) + C ) = ( ( ( N + C ) x. ( 2 ^ ( Y + 1 ) ) ) - C ) ) |