This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcoval0mpt.f | |- F = ( n e. A |-> B ) |
|
| Assertion | itcoval0mpt | |- ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval0mpt.f | |- F = ( n e. A |-> B ) |
|
| 2 | 1 | fveq2i | |- ( IterComp ` F ) = ( IterComp ` ( n e. A |-> B ) ) |
| 3 | 2 | fveq1i | |- ( ( IterComp ` F ) ` 0 ) = ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) |
| 4 | mptexg | |- ( A e. V -> ( n e. A |-> B ) e. _V ) |
|
| 5 | itcoval0 | |- ( ( n e. A |-> B ) e. _V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
|
| 6 | 4 5 | syl | |- ( A e. V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
| 7 | 3 6 | eqtrid | |- ( A e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
| 8 | dmmptg | |- ( A. n e. A B e. W -> dom ( n e. A |-> B ) = A ) |
|
| 9 | 8 | reseq2d | |- ( A. n e. A B e. W -> ( _I |` dom ( n e. A |-> B ) ) = ( _I |` A ) ) |
| 10 | mptresid | |- ( _I |` A ) = ( n e. A |-> n ) |
|
| 11 | 9 10 | eqtrdi | |- ( A. n e. A B e. W -> ( _I |` dom ( n e. A |-> B ) ) = ( n e. A |-> n ) ) |
| 12 | 7 11 | sylan9eq | |- ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) |