This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval0 | |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval | |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) |
| 3 | 0z | |- 0 e. ZZ |
|
| 4 | eqidd | |- ( F e. V -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) |
|
| 5 | iftrue | |- ( i = 0 -> if ( i = 0 , ( _I |` dom F ) , F ) = ( _I |` dom F ) ) |
|
| 6 | 5 | adantl | |- ( ( F e. V /\ i = 0 ) -> if ( i = 0 , ( _I |` dom F ) , F ) = ( _I |` dom F ) ) |
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | 7 | a1i | |- ( F e. V -> 0 e. NN0 ) |
| 9 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 10 | 9 | resiexd | |- ( F e. V -> ( _I |` dom F ) e. _V ) |
| 11 | 4 6 8 10 | fvmptd | |- ( F e. V -> ( ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ` 0 ) = ( _I |` dom F ) ) |
| 12 | 3 11 | seq1i | |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( _I |` dom F ) ) |
| 13 | 2 12 | eqtrd | |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) |