This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008) Obsolete version of iscvsp . (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | isvcOLD | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | vcex | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 3 | elex | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → 𝐺 ∈ V ) |
| 5 | cnex | ⊢ ℂ ∈ V | |
| 6 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 7 | rnexg | ⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) | |
| 8 | 1 7 | eqeltrid | ⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
| 9 | 6 8 | syl | ⊢ ( 𝐺 ∈ AbelOp → 𝑋 ∈ V ) |
| 10 | xpexg | ⊢ ( ( ℂ ∈ V ∧ 𝑋 ∈ V ) → ( ℂ × 𝑋 ) ∈ V ) | |
| 11 | 5 9 10 | sylancr | ⊢ ( 𝐺 ∈ AbelOp → ( ℂ × 𝑋 ) ∈ V ) |
| 12 | fex | ⊢ ( ( 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ( ℂ × 𝑋 ) ∈ V ) → 𝑆 ∈ V ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ 𝐺 ∈ AbelOp ) → 𝑆 ∈ V ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → 𝑆 ∈ V ) |
| 15 | 4 14 | jca | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| 17 | 1 | isvclem | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) |
| 18 | 2 16 17 | pm5.21nii | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |