This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008) Obsolete version of iscvsp . (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isvcOLD.1 | |- X = ran G |
|
| Assertion | isvcOLD | |- ( <. G , S >. e. CVecOLD <-> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvcOLD.1 | |- X = ran G |
|
| 2 | vcex | |- ( <. G , S >. e. CVecOLD -> ( G e. _V /\ S e. _V ) ) |
|
| 3 | elex | |- ( G e. AbelOp -> G e. _V ) |
|
| 4 | 3 | adantr | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X ) -> G e. _V ) |
| 5 | cnex | |- CC e. _V |
|
| 6 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 7 | rnexg | |- ( G e. GrpOp -> ran G e. _V ) |
|
| 8 | 1 7 | eqeltrid | |- ( G e. GrpOp -> X e. _V ) |
| 9 | 6 8 | syl | |- ( G e. AbelOp -> X e. _V ) |
| 10 | xpexg | |- ( ( CC e. _V /\ X e. _V ) -> ( CC X. X ) e. _V ) |
|
| 11 | 5 9 10 | sylancr | |- ( G e. AbelOp -> ( CC X. X ) e. _V ) |
| 12 | fex | |- ( ( S : ( CC X. X ) --> X /\ ( CC X. X ) e. _V ) -> S e. _V ) |
|
| 13 | 11 12 | sylan2 | |- ( ( S : ( CC X. X ) --> X /\ G e. AbelOp ) -> S e. _V ) |
| 14 | 13 | ancoms | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X ) -> S e. _V ) |
| 15 | 4 14 | jca | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X ) -> ( G e. _V /\ S e. _V ) ) |
| 16 | 15 | 3adant3 | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) -> ( G e. _V /\ S e. _V ) ) |
| 17 | 1 | isvclem | |- ( ( G e. _V /\ S e. _V ) -> ( <. G , S >. e. CVecOLD <-> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) ) |
| 18 | 2 16 17 | pm5.21nii | |- ( <. G , S >. e. CVecOLD <-> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) |