This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinitoi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isinitoi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isinitoi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | istermoi | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isinitoi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isinitoi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | 3 1 2 | termoval | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑎 ) } ) |
| 5 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑂 ∈ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑎 ) } ) ) |
| 6 | elrabi | ⊢ ( 𝑂 ∈ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑎 ) } → 𝑂 ∈ 𝐵 ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( 𝜑 → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ 𝐵 ) |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → 𝑂 ∈ 𝐵 ) | |
| 11 | 1 2 9 10 | istermo | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ↔ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑂 ) ) ) |
| 12 | 11 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑂 ) ) ) |
| 13 | 12 | impancom | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 → ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑂 ) ) ) |
| 14 | 8 13 | jcai | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 𝐻 𝑂 ) ) ) |