This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a structure with components in ( 1stX ) ... ( 2ndX ) . (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isstruct2 | ⊢ ( 𝐹 Struct 𝑋 ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct | ⊢ Rel Struct | |
| 2 | 1 | brrelex12i | ⊢ ( 𝐹 Struct 𝑋 → ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) ) |
| 3 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ { ∅ } ) | |
| 4 | undif1 | ⊢ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐹 ∪ { ∅ } ) | |
| 5 | 3 4 | sseqtrri | ⊢ 𝐹 ⊆ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) |
| 6 | simp2 | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → Fun ( 𝐹 ∖ { ∅ } ) ) | |
| 7 | 6 | funfnd | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∖ { ∅ } ) Fn dom ( 𝐹 ∖ { ∅ } ) ) |
| 8 | elinel2 | ⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 ∈ ( ℕ × ℕ ) ) | |
| 9 | 1st2nd2 | ⊢ ( 𝑋 ∈ ( ℕ × ℕ ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ... ‘ 𝑋 ) = ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 13 | df-ov | ⊢ ( ( 1st ‘ 𝑋 ) ... ( 2nd ‘ 𝑋 ) ) = ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) | |
| 14 | fzfi | ⊢ ( ( 1st ‘ 𝑋 ) ... ( 2nd ‘ 𝑋 ) ) ∈ Fin | |
| 15 | 13 14 | eqeltrri | ⊢ ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) ∈ Fin |
| 16 | 12 15 | eqeltrdi | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ... ‘ 𝑋 ) ∈ Fin ) |
| 17 | difss | ⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 | |
| 18 | dmss | ⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 ) | |
| 19 | 17 18 | ax-mp | ⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 |
| 20 | simp3 | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) | |
| 21 | 19 20 | sstrid | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom ( 𝐹 ∖ { ∅ } ) ⊆ ( ... ‘ 𝑋 ) ) |
| 22 | 16 21 | ssfid | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom ( 𝐹 ∖ { ∅ } ) ∈ Fin ) |
| 23 | fnfi | ⊢ ( ( ( 𝐹 ∖ { ∅ } ) Fn dom ( 𝐹 ∖ { ∅ } ) ∧ dom ( 𝐹 ∖ { ∅ } ) ∈ Fin ) → ( 𝐹 ∖ { ∅ } ) ∈ Fin ) | |
| 24 | 7 22 23 | syl2anc | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∖ { ∅ } ) ∈ Fin ) |
| 25 | p0ex | ⊢ { ∅ } ∈ V | |
| 26 | unexg | ⊢ ( ( ( 𝐹 ∖ { ∅ } ) ∈ Fin ∧ { ∅ } ∈ V ) → ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
| 28 | ssexg | ⊢ ( ( 𝐹 ⊆ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∧ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) → 𝐹 ∈ V ) | |
| 29 | 5 27 28 | sylancr | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝐹 ∈ V ) |
| 30 | elex | ⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 ∈ V ) | |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝑋 ∈ V ) |
| 32 | 29 31 | jca | ⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) ) |
| 33 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 34 | 33 | eleq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ↔ 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) ) |
| 35 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → 𝑓 = 𝐹 ) | |
| 36 | 35 | difeq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( 𝑓 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) |
| 37 | 36 | funeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( Fun ( 𝑓 ∖ { ∅ } ) ↔ Fun ( 𝐹 ∖ { ∅ } ) ) ) |
| 38 | 35 | dmeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → dom 𝑓 = dom 𝐹 ) |
| 39 | 33 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( ... ‘ 𝑥 ) = ( ... ‘ 𝑋 ) ) |
| 40 | 38 39 | sseq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ↔ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) |
| 41 | 34 37 40 | 3anbi123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝑓 ∖ { ∅ } ) ∧ dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ) ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) ) |
| 42 | df-struct | ⊢ Struct = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝑓 ∖ { ∅ } ) ∧ dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ) } | |
| 43 | 41 42 | brabga | ⊢ ( ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) → ( 𝐹 Struct 𝑋 ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) ) |
| 44 | 2 32 43 | pm5.21nii | ⊢ ( 𝐹 Struct 𝑋 ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) |