This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issstrmgm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| issstrmgm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| issstrmgm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| Assertion | issstrmgm | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issstrmgm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | issstrmgm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | issstrmgm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 4 | simplr | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐻 ∈ Mgm ) | |
| 5 | simplr | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 ⊆ 𝐵 ) | |
| 6 | 3 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 8 | 7 | eleq2d | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 9 | 8 | biimpcd | ⊢ ( 𝑥 ∈ 𝑆 → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 11 | 10 | impcom | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
| 12 | 7 | eleq2d | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 13 | 12 | biimpcd | ⊢ ( 𝑦 ∈ 𝑆 → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 15 | 14 | impcom | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 18 | 16 17 | mgmcl | ⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 19 | 4 11 15 18 | syl3anc | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 20 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 21 | 20 | ssex | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ V ) |
| 23 | 3 2 | ressplusg | ⊢ ( 𝑆 ∈ V → + = ( +g ‘ 𝐻 ) ) |
| 24 | 22 23 | syl | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → + = ( +g ‘ 𝐻 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → + = ( +g ‘ 𝐻 ) ) |
| 26 | 25 | oveqdr | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 27 | 7 | adantr | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 28 | 19 26 27 | 3eltr4d | ⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 29 | 28 | ralrimivva | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 30 | 6 | adantl | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 31 | 24 | oveqd | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 32 | 31 30 | eleq12d | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 33 | 30 32 | raleqbidv | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 34 | 30 33 | raleqbidv | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 35 | 34 | biimpa | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 36 | 16 17 | ismgm | ⊢ ( 𝐻 ∈ 𝑉 → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 38 | 35 37 | mpbird | ⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mgm ) |
| 39 | 29 38 | impbida | ⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |