This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isso2i.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| isso2i.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | ||
| Assertion | isso2i | ⊢ 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isso2i.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 2 | isso2i.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 3 | equid | ⊢ 𝑥 = 𝑥 | |
| 4 | 3 | orci | ⊢ ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) |
| 5 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) | |
| 6 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 8 | equequ2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑥 ) ) | |
| 9 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 10 | 8 9 | orbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 12 | 11 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 13 | 10 12 | bibi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) ) |
| 14 | 7 13 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) ) ) |
| 15 | 1 | con2bid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 16 | 5 14 15 | chvarfv | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 17 | 4 16 | mpbii | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 18 | 17 | anidms | ⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) |
| 19 | 15 | biimprd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑦 → ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 20 | 19 | orrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 21 | 3orass | ⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 23 | 18 2 22 | issoi | ⊢ 𝑅 Or 𝐴 |