This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Asemigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm ), whose operation is associative. Definition in section II.1 of Bruck p. 23, or of an "associative magma" in definition 5 of BourbakiAlg1 p. 4 . (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sgrp | ⊢ Smgrp = { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csgrp | ⊢ Smgrp | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cmgm | ⊢ Mgm | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cplusg | ⊢ +g | |
| 8 | 4 7 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 9 | vo | ⊢ 𝑜 | |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 6 | cv | ⊢ 𝑏 |
| 12 | vy | ⊢ 𝑦 | |
| 13 | vz | ⊢ 𝑧 | |
| 14 | 10 | cv | ⊢ 𝑥 |
| 15 | 9 | cv | ⊢ 𝑜 |
| 16 | 12 | cv | ⊢ 𝑦 |
| 17 | 14 16 15 | co | ⊢ ( 𝑥 𝑜 𝑦 ) |
| 18 | 13 | cv | ⊢ 𝑧 |
| 19 | 17 18 15 | co | ⊢ ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) |
| 20 | 16 18 15 | co | ⊢ ( 𝑦 𝑜 𝑧 ) |
| 21 | 14 20 15 | co | ⊢ ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 22 | 19 21 | wceq | ⊢ ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 23 | 22 13 11 | wral | ⊢ ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 24 | 23 12 11 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 25 | 24 10 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 26 | 25 9 8 | wsbc | ⊢ [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 27 | 26 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) |
| 28 | 27 1 2 | crab | ⊢ { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } |
| 29 | 0 28 | wceq | ⊢ Smgrp = { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } |