This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iss2 | ⊢ ( 𝐴 ⊆ I ↔ 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ I ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opeldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 5 | 1 4 | jca2 | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑥 ∈ dom 𝐴 ) ) ) |
| 6 | 2 3 | opelrn | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴 ) |
| 7 | 1 6 | jca2 | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑦 ∈ ran 𝐴 ) ) ) |
| 8 | 5 7 | jcad | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑥 ∈ dom 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑦 ∈ ran 𝐴 ) ) ) ) |
| 9 | anandi | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑥 ∈ dom 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 𝑦 ∈ ran 𝐴 ) ) ) | |
| 10 | 8 9 | imbitrrdi | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ) ) ) |
| 11 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 12 | 3 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 13 | 11 12 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
| 14 | 2 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 15 | opeq2 | ⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑥 〉 = 〈 𝑥 , 𝑦 〉 ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 17 | 16 | biimprcd | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
| 18 | 13 17 | biimtrid | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
| 19 | 1 18 | sylcom | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
| 20 | 19 | exlimdv | ⊢ ( 𝐴 ⊆ I → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
| 21 | 14 20 | biimtrid | ⊢ ( 𝐴 ⊆ I → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
| 22 | 16 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 23 | 21 22 | syl5ibcom | ⊢ ( 𝐴 ⊆ I → ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐴 ⊆ I ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 25 | 24 | adantrd | ⊢ ( ( 𝐴 ⊆ I ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 26 | 25 | ex | ⊢ ( 𝐴 ⊆ I → ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 27 | 13 26 | biimtrid | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ I → ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 28 | 27 | impd | ⊢ ( 𝐴 ⊆ I → ( ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 29 | 10 28 | impbid | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ) ) ) |
| 30 | opelinxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ↔ ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) | |
| 31 | 30 | biancomi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴 ) ) ) |
| 32 | 29 31 | bitr4di | ⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) ) |
| 33 | 32 | alrimivv | ⊢ ( 𝐴 ⊆ I → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) ) |
| 34 | reli | ⊢ Rel I | |
| 35 | relss | ⊢ ( 𝐴 ⊆ I → ( Rel I → Rel 𝐴 ) ) | |
| 36 | 34 35 | mpi | ⊢ ( 𝐴 ⊆ I → Rel 𝐴 ) |
| 37 | relinxp | ⊢ Rel ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) | |
| 38 | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) → ( 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) ) ) | |
| 39 | 36 37 38 | sylancl | ⊢ ( 𝐴 ⊆ I → ( 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) ) ) |
| 40 | 33 39 | mpbird | ⊢ ( 𝐴 ⊆ I → 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) |
| 41 | inss1 | ⊢ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ⊆ I | |
| 42 | sseq1 | ⊢ ( 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) → ( 𝐴 ⊆ I ↔ ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ⊆ I ) ) | |
| 43 | 41 42 | mpbiri | ⊢ ( 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) → 𝐴 ⊆ I ) |
| 44 | 40 43 | impbii | ⊢ ( 𝐴 ⊆ I ↔ 𝐴 = ( I ∩ ( dom 𝐴 × ran 𝐴 ) ) ) |