This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iss2 | |- ( A C_ _I <-> A = ( _I i^i ( dom A X. ran A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ _I -> ( <. x , y >. e. A -> <. x , y >. e. _I ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opeldm | |- ( <. x , y >. e. A -> x e. dom A ) |
| 5 | 1 4 | jca2 | |- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ x e. dom A ) ) ) |
| 6 | 2 3 | opelrn | |- ( <. x , y >. e. A -> y e. ran A ) |
| 7 | 1 6 | jca2 | |- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ y e. ran A ) ) ) |
| 8 | 5 7 | jcad | |- ( A C_ _I -> ( <. x , y >. e. A -> ( ( <. x , y >. e. _I /\ x e. dom A ) /\ ( <. x , y >. e. _I /\ y e. ran A ) ) ) ) |
| 9 | anandi | |- ( ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) <-> ( ( <. x , y >. e. _I /\ x e. dom A ) /\ ( <. x , y >. e. _I /\ y e. ran A ) ) ) |
|
| 10 | 8 9 | imbitrrdi | |- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) ) |
| 11 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 12 | 3 | ideq | |- ( x _I y <-> x = y ) |
| 13 | 11 12 | bitr3i | |- ( <. x , y >. e. _I <-> x = y ) |
| 14 | 2 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 15 | opeq2 | |- ( x = y -> <. x , x >. = <. x , y >. ) |
|
| 16 | 15 | eleq1d | |- ( x = y -> ( <. x , x >. e. A <-> <. x , y >. e. A ) ) |
| 17 | 16 | biimprcd | |- ( <. x , y >. e. A -> ( x = y -> <. x , x >. e. A ) ) |
| 18 | 13 17 | biimtrid | |- ( <. x , y >. e. A -> ( <. x , y >. e. _I -> <. x , x >. e. A ) ) |
| 19 | 1 18 | sylcom | |- ( A C_ _I -> ( <. x , y >. e. A -> <. x , x >. e. A ) ) |
| 20 | 19 | exlimdv | |- ( A C_ _I -> ( E. y <. x , y >. e. A -> <. x , x >. e. A ) ) |
| 21 | 14 20 | biimtrid | |- ( A C_ _I -> ( x e. dom A -> <. x , x >. e. A ) ) |
| 22 | 16 | imbi2d | |- ( x = y -> ( ( x e. dom A -> <. x , x >. e. A ) <-> ( x e. dom A -> <. x , y >. e. A ) ) ) |
| 23 | 21 22 | syl5ibcom | |- ( A C_ _I -> ( x = y -> ( x e. dom A -> <. x , y >. e. A ) ) ) |
| 24 | 23 | imp | |- ( ( A C_ _I /\ x = y ) -> ( x e. dom A -> <. x , y >. e. A ) ) |
| 25 | 24 | adantrd | |- ( ( A C_ _I /\ x = y ) -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) |
| 26 | 25 | ex | |- ( A C_ _I -> ( x = y -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) ) |
| 27 | 13 26 | biimtrid | |- ( A C_ _I -> ( <. x , y >. e. _I -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) ) |
| 28 | 27 | impd | |- ( A C_ _I -> ( ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) -> <. x , y >. e. A ) ) |
| 29 | 10 28 | impbid | |- ( A C_ _I -> ( <. x , y >. e. A <-> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) ) |
| 30 | opelinxp | |- ( <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) <-> ( ( x e. dom A /\ y e. ran A ) /\ <. x , y >. e. _I ) ) |
|
| 31 | 30 | biancomi | |- ( <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) <-> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) |
| 32 | 29 31 | bitr4di | |- ( A C_ _I -> ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) |
| 33 | 32 | alrimivv | |- ( A C_ _I -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) |
| 34 | reli | |- Rel _I |
|
| 35 | relss | |- ( A C_ _I -> ( Rel _I -> Rel A ) ) |
|
| 36 | 34 35 | mpi | |- ( A C_ _I -> Rel A ) |
| 37 | relinxp | |- Rel ( _I i^i ( dom A X. ran A ) ) |
|
| 38 | eqrel | |- ( ( Rel A /\ Rel ( _I i^i ( dom A X. ran A ) ) ) -> ( A = ( _I i^i ( dom A X. ran A ) ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( A C_ _I -> ( A = ( _I i^i ( dom A X. ran A ) ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) ) |
| 40 | 33 39 | mpbird | |- ( A C_ _I -> A = ( _I i^i ( dom A X. ran A ) ) ) |
| 41 | inss1 | |- ( _I i^i ( dom A X. ran A ) ) C_ _I |
|
| 42 | sseq1 | |- ( A = ( _I i^i ( dom A X. ran A ) ) -> ( A C_ _I <-> ( _I i^i ( dom A X. ran A ) ) C_ _I ) ) |
|
| 43 | 41 42 | mpbiri | |- ( A = ( _I i^i ( dom A X. ran A ) ) -> A C_ _I ) |
| 44 | 40 43 | impbii | |- ( A C_ _I <-> A = ( _I i^i ( dom A X. ran A ) ) ) |