This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isposix.a | ⊢ 𝐵 ∈ V | |
| isposix.b | ⊢ ≤ ∈ V | ||
| isposix.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } | ||
| isposix.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | ||
| isposix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | ||
| isposix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | ||
| Assertion | isposix | ⊢ 𝐾 ∈ Poset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isposix.a | ⊢ 𝐵 ∈ V | |
| 2 | isposix.b | ⊢ ≤ ∈ V | |
| 3 | isposix.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } | |
| 4 | isposix.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | |
| 5 | isposix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | |
| 6 | isposix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 7 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } ∈ V | |
| 8 | 3 7 | eqeltri | ⊢ 𝐾 ∈ V |
| 9 | basendxltplendx | ⊢ ( Base ‘ ndx ) < ( le ‘ ndx ) | |
| 10 | plendxnn | ⊢ ( le ‘ ndx ) ∈ ℕ | |
| 11 | 3 9 10 | 2strbas | ⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 12 | 1 11 | ax-mp | ⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 13 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 14 | 3 9 10 13 | 2strop | ⊢ ( ≤ ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
| 15 | 2 14 | ax-mp | ⊢ ≤ = ( le ‘ 𝐾 ) |
| 16 | 8 12 15 4 5 6 | isposi | ⊢ 𝐾 ∈ Poset |