This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ORDER THEORY
Partially ordered sets (posets)
isposix
Metamath Proof Explorer
Description: Properties that determine a poset (explicit structure version). Note
that the numeric indices of the structure components are not mentioned
explicitly in either the theorem or its proof. (Contributed by NM , 9-Nov-2012) (Proof shortened by AV , 30-Oct-2024)
Ref
Expression
Hypotheses
isposix.a
⊢ B ∈ V
isposix.b
⊢ ≤ ˙ ∈ V
isposix.k
⊢ K = Base ndx B ≤ ndx ≤ ˙
isposix.1
⊢ x ∈ B → x ≤ ˙ x
isposix.2
⊢ x ∈ B ∧ y ∈ B → x ≤ ˙ y ∧ y ≤ ˙ x → x = y
isposix.3
⊢ x ∈ B ∧ y ∈ B ∧ z ∈ B → x ≤ ˙ y ∧ y ≤ ˙ z → x ≤ ˙ z
Assertion
isposix
⊢ K ∈ Poset
Proof
Step
Hyp
Ref
Expression
1
isposix.a
⊢ B ∈ V
2
isposix.b
⊢ ≤ ˙ ∈ V
3
isposix.k
⊢ K = Base ndx B ≤ ndx ≤ ˙
4
isposix.1
⊢ x ∈ B → x ≤ ˙ x
5
isposix.2
⊢ x ∈ B ∧ y ∈ B → x ≤ ˙ y ∧ y ≤ ˙ x → x = y
6
isposix.3
⊢ x ∈ B ∧ y ∈ B ∧ z ∈ B → x ≤ ˙ y ∧ y ≤ ˙ z → x ≤ ˙ z
7
prex
⊢ Base ndx B ≤ ndx ≤ ˙ ∈ V
8
3 7
eqeltri
⊢ K ∈ V
9
basendxltplendx
⊢ Base ndx < ≤ ndx
10
plendxnn
⊢ ≤ ndx ∈ ℕ
11
3 9 10
2strbas
⊢ B ∈ V → B = Base K
12
1 11
ax-mp
⊢ B = Base K
13
pleid
⊢ le = Slot ≤ ndx
14
3 9 10 13
2strop
⊢ ≤ ˙ ∈ V → ≤ ˙ = ≤ K
15
2 14
ax-mp
⊢ ≤ ˙ = ≤ K
16
8 12 15 4 5 6
isposi
⊢ K ∈ Poset