This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of p-groups, which are groups such that every element has a power of p as its order. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pgp | ⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpgp | ⊢ pGrp | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | vg | ⊢ 𝑔 | |
| 3 | 1 | cv | ⊢ 𝑝 |
| 4 | cprime | ⊢ ℙ | |
| 5 | 3 4 | wcel | ⊢ 𝑝 ∈ ℙ |
| 6 | 2 | cv | ⊢ 𝑔 |
| 7 | cgrp | ⊢ Grp | |
| 8 | 6 7 | wcel | ⊢ 𝑔 ∈ Grp |
| 9 | 5 8 | wa | ⊢ ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) |
| 10 | vx | ⊢ 𝑥 | |
| 11 | cbs | ⊢ Base | |
| 12 | 6 11 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 13 | vn | ⊢ 𝑛 | |
| 14 | cn0 | ⊢ ℕ0 | |
| 15 | cod | ⊢ od | |
| 16 | 6 15 | cfv | ⊢ ( od ‘ 𝑔 ) |
| 17 | 10 | cv | ⊢ 𝑥 |
| 18 | 17 16 | cfv | ⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) |
| 19 | cexp | ⊢ ↑ | |
| 20 | 13 | cv | ⊢ 𝑛 |
| 21 | 3 20 19 | co | ⊢ ( 𝑝 ↑ 𝑛 ) |
| 22 | 18 21 | wceq | ⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 23 | 22 13 14 | wrex | ⊢ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 24 | 23 10 12 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 25 | 9 24 | wa | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) |
| 26 | 25 1 2 | copab | ⊢ { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |
| 27 | 0 26 | wceq | ⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |