This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | isperf2 | |- ( J e. Perf <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | isperf | |- ( J e. Perf <-> ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) ) |
| 3 | ssid | |- X C_ X |
|
| 4 | 1 | lpss | |- ( ( J e. Top /\ X C_ X ) -> ( ( limPt ` J ) ` X ) C_ X ) |
| 5 | 3 4 | mpan2 | |- ( J e. Top -> ( ( limPt ` J ) ` X ) C_ X ) |
| 6 | eqss | |- ( ( ( limPt ` J ) ` X ) = X <-> ( ( ( limPt ` J ) ` X ) C_ X /\ X C_ ( ( limPt ` J ) ` X ) ) ) |
|
| 7 | 6 | baib | |- ( ( ( limPt ` J ) ` X ) C_ X -> ( ( ( limPt ` J ) ` X ) = X <-> X C_ ( ( limPt ` J ) ` X ) ) ) |
| 8 | 5 7 | syl | |- ( J e. Top -> ( ( ( limPt ` J ) ` X ) = X <-> X C_ ( ( limPt ` J ) ` X ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) |
| 10 | 2 9 | bitri | |- ( J e. Perf <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) |