This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isoso . (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isosolem | |- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopolem | |- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |
|
| 2 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 3 | f1of | |- ( H : A -1-1-onto-> B -> H : A --> B ) |
|
| 4 | ffvelcdm | |- ( ( H : A --> B /\ c e. A ) -> ( H ` c ) e. B ) |
|
| 5 | 4 | ex | |- ( H : A --> B -> ( c e. A -> ( H ` c ) e. B ) ) |
| 6 | ffvelcdm | |- ( ( H : A --> B /\ d e. A ) -> ( H ` d ) e. B ) |
|
| 7 | 6 | ex | |- ( H : A --> B -> ( d e. A -> ( H ` d ) e. B ) ) |
| 8 | 5 7 | anim12d | |- ( H : A --> B -> ( ( c e. A /\ d e. A ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) ) |
| 9 | 2 3 8 | 3syl | |- ( H Isom R , S ( A , B ) -> ( ( c e. A /\ d e. A ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) ) |
| 10 | 9 | imp | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) |
| 11 | breq1 | |- ( a = ( H ` c ) -> ( a S b <-> ( H ` c ) S b ) ) |
|
| 12 | eqeq1 | |- ( a = ( H ` c ) -> ( a = b <-> ( H ` c ) = b ) ) |
|
| 13 | breq2 | |- ( a = ( H ` c ) -> ( b S a <-> b S ( H ` c ) ) ) |
|
| 14 | 11 12 13 | 3orbi123d | |- ( a = ( H ` c ) -> ( ( a S b \/ a = b \/ b S a ) <-> ( ( H ` c ) S b \/ ( H ` c ) = b \/ b S ( H ` c ) ) ) ) |
| 15 | breq2 | |- ( b = ( H ` d ) -> ( ( H ` c ) S b <-> ( H ` c ) S ( H ` d ) ) ) |
|
| 16 | eqeq2 | |- ( b = ( H ` d ) -> ( ( H ` c ) = b <-> ( H ` c ) = ( H ` d ) ) ) |
|
| 17 | breq1 | |- ( b = ( H ` d ) -> ( b S ( H ` c ) <-> ( H ` d ) S ( H ` c ) ) ) |
|
| 18 | 15 16 17 | 3orbi123d | |- ( b = ( H ` d ) -> ( ( ( H ` c ) S b \/ ( H ` c ) = b \/ b S ( H ` c ) ) <-> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
| 19 | 14 18 | rspc2v | |- ( ( ( H ` c ) e. B /\ ( H ` d ) e. B ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
| 20 | 10 19 | syl | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
| 21 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( c R d <-> ( H ` c ) S ( H ` d ) ) ) |
|
| 22 | f1of1 | |- ( H : A -1-1-onto-> B -> H : A -1-1-> B ) |
|
| 23 | 2 22 | syl | |- ( H Isom R , S ( A , B ) -> H : A -1-1-> B ) |
| 24 | f1fveq | |- ( ( H : A -1-1-> B /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) = ( H ` d ) <-> c = d ) ) |
|
| 25 | 23 24 | sylan | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) = ( H ` d ) <-> c = d ) ) |
| 26 | 25 | bicomd | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( c = d <-> ( H ` c ) = ( H ` d ) ) ) |
| 27 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ c e. A ) ) -> ( d R c <-> ( H ` d ) S ( H ` c ) ) ) |
|
| 28 | 27 | ancom2s | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( d R c <-> ( H ` d ) S ( H ` c ) ) ) |
| 29 | 21 26 28 | 3orbi123d | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( c R d \/ c = d \/ d R c ) <-> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
| 30 | 20 29 | sylibrd | |- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( c R d \/ c = d \/ d R c ) ) ) |
| 31 | 30 | ralrimdvva | |- ( H Isom R , S ( A , B ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) |
| 32 | 1 31 | anim12d | |- ( H Isom R , S ( A , B ) -> ( ( S Po B /\ A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) ) -> ( R Po A /\ A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) ) |
| 33 | df-so | |- ( S Or B <-> ( S Po B /\ A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) ) ) |
|
| 34 | df-so | |- ( R Or A <-> ( R Po A /\ A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) |
|
| 35 | 32 33 34 | 3imtr4g | |- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |