This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfiso.1 | ⊢ Ⅎ 𝑥 𝐻 | |
| nfiso.2 | ⊢ Ⅎ 𝑥 𝑅 | ||
| nfiso.3 | ⊢ Ⅎ 𝑥 𝑆 | ||
| nfiso.4 | ⊢ Ⅎ 𝑥 𝐴 | ||
| nfiso.5 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfiso | ⊢ Ⅎ 𝑥 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiso.1 | ⊢ Ⅎ 𝑥 𝐻 | |
| 2 | nfiso.2 | ⊢ Ⅎ 𝑥 𝑅 | |
| 3 | nfiso.3 | ⊢ Ⅎ 𝑥 𝑆 | |
| 4 | nfiso.4 | ⊢ Ⅎ 𝑥 𝐴 | |
| 5 | nfiso.5 | ⊢ Ⅎ 𝑥 𝐵 | |
| 6 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 7 | 1 4 5 | nff1o | ⊢ Ⅎ 𝑥 𝐻 : 𝐴 –1-1-onto→ 𝐵 |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 10 | 8 2 9 | nfbr | ⊢ Ⅎ 𝑥 𝑦 𝑅 𝑧 |
| 11 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
| 12 | 1 9 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑧 ) |
| 13 | 11 3 12 | nfbr | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) |
| 14 | 10 13 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
| 15 | 4 14 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
| 16 | 4 15 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
| 17 | 7 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) |
| 18 | 6 17 | nfxfr | ⊢ Ⅎ 𝑥 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) |