This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issgrpn0.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issgrpn0.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | isnsgrp | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) → 𝑀 ∉ Smgrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrpn0.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issgrpn0.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑦 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 8 | 7 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑥 = 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 12 | simpl2 | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑌 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) ) |
| 15 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑧 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
| 18 | 17 | notbid | ⊢ ( 𝑦 = 𝑌 → ( ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑦 = 𝑌 ) → ( ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
| 21 | simpl3 | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) | |
| 22 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ) | |
| 23 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑌 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑍 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 26 | 25 | notbid | ⊢ ( 𝑧 = 𝑍 → ( ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ∧ 𝑧 = 𝑍 ) → ( ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 28 | neneq | ⊢ ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) → ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
| 30 | 21 27 29 | rspcedvd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
| 31 | 12 20 30 | rspcedvd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 32 | 3 11 31 | rspcedvd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 33 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) | |
| 34 | 33 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 35 | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) | |
| 36 | 34 35 | bitr2i | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ¬ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 37 | 32 36 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 38 | 37 | intnand | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 39 | 1 2 | issgrp | ⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 40 | 38 39 | sylnibr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → ¬ 𝑀 ∈ Smgrp ) |
| 41 | df-nel | ⊢ ( 𝑀 ∉ Smgrp ↔ ¬ 𝑀 ∈ Smgrp ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) → 𝑀 ∉ Smgrp ) |
| 43 | 42 | ex | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ≠ ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) → 𝑀 ∉ Smgrp ) ) |