This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of modules is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group and scalar operations. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lmim | ⊢ LMIso = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clmim | ⊢ LMIso | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | clmod | ⊢ LMod | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | vg | ⊢ 𝑔 | |
| 5 | 1 | cv | ⊢ 𝑠 |
| 6 | clmhm | ⊢ LMHom | |
| 7 | 3 | cv | ⊢ 𝑡 |
| 8 | 5 7 6 | co | ⊢ ( 𝑠 LMHom 𝑡 ) |
| 9 | 4 | cv | ⊢ 𝑔 |
| 10 | cbs | ⊢ Base | |
| 11 | 5 10 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 12 | 7 10 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 13 | 11 12 9 | wf1o | ⊢ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) |
| 14 | 13 4 8 | crab | ⊢ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } |
| 15 | 1 3 2 2 14 | cmpo | ⊢ ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |
| 16 | 0 15 | wceq | ⊢ LMIso = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |